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Statistical Methods for Quality and Reliability Sectional Committee, MSD 3 

FOREWORD 

This Indian Standard (Second Revision) was adopted by the Bureau of Indian Standards, after the draft 
finalized by the Statistical Methods for Quality and Reliability Sectional Committee had been approved 
by the Management and Systems Division Council. 

The Indian Standard covering the terminology of statistical terms used in quality control and sampling, 
IS 7920, was first published in 1976 and revised in 1985. Since the publication of the revised standard in 
1985, many other standards have been published in this field using additional terms. It was also felt that 
the definitions of some of the terms covered in IS 7920 : 1985 ‘Statistical vocabulary’ need modification. 
At the international level, the Technical Committee on Application of Statistical Methods (ISOAC 69), 
has also published International Standards on statistical vocabulary as the three parts of IS0 3534. 
Keeping in view the above, this revision of the vocabulary on statistical terms has been taken up. 

In line with the three parts of IS0 3534, the terminology has been divided in the following three parts of 
IS 7920: 

Part 1 Probability and general statistical terms 

Part 2 Statistical quality control 

Part 3 Design of experiments 

In preparing this part, considerable assistance has been derived from the definitions given in 
IS0 3534-3 : 1989 ‘Statistics - Vocabulary and symbols Part 3: Design of experiments’. 

The examples accompanying the definitions of certain terms are generally intended to illustrate simple 
applications of those definitions and to provide the experienced person with a reference to illustrate the 
concepts to less experienced practitioners. 

Background information on the design of_experiments is given in Annex A. 

An informative list of published Indian Standards on Statistical Methods is given at Annex B. 

For ease of reference, an alphabetical indd to the terminology has been provided at Annex D. / 

The composition of the Committee responsible for the formulation of this standard is given at Annex C. 
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Indian Standard 

STATISTICAL VOCABULARY 
AND SYMBOLS 

PART 3 DESIGN OF EXPERIMENTS 

( Second Revision ) 

1 SCOPE 

This standard (Part 3) gives definitions of the terms 
used in the field of design of experiments. The terms 
are classified into the following logical groups: 

a) General terms, 
b) Types of designs, and 
c) Methods of analysis. 

2 GENERAL TERMS 

2.1 Design of Experiment; Experiment Design 

A planned arrangement in which an experimental 
programme is to be conducted, and the selection of 
the levels (versions) of one or more factors or factor 
combinations to be included in the experiment. 

NOTE - The purpose of designing an experiment is to 
provide the most efficient and economical methods of reach- 
ing valid and relevant conclusions from the experiment. The 
selection of an appropriate design for any experiment is a 
function of many considerations such as the type of questions 
to be answered, the degree of generality to be attached to the 
conclusions, the magnitude of the effect for which a high 
probability of detection (power) is desired, the homogeneity 
of the experimental units and the cost of performing the 
experiment. A properly designed experiment will permit 
relatively simple statistical interpretation of the results, 
which may not be possible otherwise. The ‘arrangement’ 
includes the randomization procedure for allocating treat.- ,’ 
ments to experimental units. 

2.2 Factor 

An assignable cause which may affect the responses 
(test results) and of which different levels 
(versions) are included in the experiment. 

NOTE--Factors may be quantitative, such as temperature, 
speed of execution and voltage applied, or they may be 
qualitative, such as the variety of a material, presence or 
absence of a catalyst, and the type of equipment. 

Those factors which are to be studied in the experi- 
ment are sometimes called ‘principal factors’. 

2.3 Level; Version (of a Factor) 

A given value, a specification of procedure or a 
specific setting of a factor. 

1 

Example: 

lbo versions of a catalyst may be presence and 
%bs$nce. Four levels of a heat treatment may be 
LOO C, 120 C, 140°C and 160 C. 

NOTE-‘ Version’ is a general term applied both to quan- 
titative and qualitative factors. The more restrictive term 
‘level’ is frequently used to express more precisely the 
quantitative characteristic. 

Responses observed at the various levels of a factor 
provide information for determining the effect of 
the factor within the range of levels of the experi- 
ment. Extrapolation beyond the range of these 
levels is usually inappropriate without a firm basis 
for assuming model relationships. Interpolation 
within the range may depend on the number of 
levels and the spacing of these levels. It is usually 
reasonable to interpolate, although it is possible to 
have discontinuous or multimodal relationships 
that cause abrupt changes within the range of the 
experiment. The levels may be limited to certain 
selected fmed values (known or unknown) or they 
may represent purely random selection over the 
range to be studied. The method of analysis is 
dependent on this selection. 

2.4 Treatment 

Levels or combination of levels (versions) of each 
of the factors assigned to an experimental unit 
(see 2.5). 

2.5 Experimental Unit 

Entity to which a treatment is applied or assigned 
in the experiment. 

Example : 

The unit may be a patient in a hospital, a group of 
animals, a production batch, a section of a compart- 
mented tray, a plot of land, etc. 

2.6 Experimental Error 

It is that part of the total variability in the responses 
(test results) which is not due to any assignable 
cause like, factors and blocks, or which is not 
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associated with any deliberate variation in the 
experimental conditions and which introduces a 
degree of uncertainty in the conclusions that are 
drawn from the experimental results. 

NOES 

1 It is a common characteristic of experiments that, when 
they are repeated, their results vary from trial to trial, even 
though the experimental materials, environmental condi- 
tions and the experimental operations are carefully control- 
led. Therefore, the occurrence of experimental error is 
inevitable in practical experimentation. This variation intro- 
duces a degree of uncertainty into conclusions that ate 
drawn from the results, and therefore has to be taken into 
account in reaching conclusions. Experimental error is usual- 
ly measured in an experiment as a pooled variance of sets of 
duplicate observations for the same treatment. 

2 Experimental error is the unexplained or residual part of 
the total variation. 

2.7 Block 

A group of relatively homogenous experimental 
units. 

NOTE - Blocks are usually selected to allow for assignable 
causes, in addition to those introduced as principal factors to 
be studied which it may be difficult, or even impossible, to 
keep constant for all of the experimental units in the com- 
plete experiment. The effect of these assignable causes may 
be minimized within blocks. The analysis of the experiment 
results has to take into account the effects of blocks. 

Blocks which accommodate a complete set of treat- 
ment combinations are called ‘complete blocks’. 
Those which accommodate only a portion of the 
complete set are called ‘incomplete blocks’. In a 
paired comparison experiment, where two treat- 
ments are dealtwith in pairs, the pairs are 
considered as ‘blocks’. 

Example 

The term ‘block’ originated in agricultural experi- 
ments in which a field was subdivided into sections 
having common conditions, such as exposure to the 
wind, proximity to underground water or thickness 
of the arable layer. In other situations, blocks’are 
based on batches of raw material, operators, the 
number of units studied in a day, etc. 

2.8 Block Factors 

Those assignable causes which form the basis for 
grouping the experimental units into blocks. 

NOTE! - Generally the versions of the block factors are 
imposed by the available experimental conditions, but some- 
times they are selected in order to broaden the interpretation 
of the results by including a wider range of conditions. It is 
usually assumed that the block factors do not interact with 
the principal factors. When the versions are relatively close., 
this hypothesis is often a reasonable assumption. However, 
if the versions differ considerably or if there is no priority 
basis for the assumption, the assumption should be verified 
so that an appropriate method of analysis may be chosen for 
the experimental data. 

2.9 Replication 

The repetition of a complete set of all the treat- 
ments to be compared in an experiment. Each of 
the repetitions is called a ‘replicate’. 

NOTE - Since experimental error is almost invariably 
present, replication is required to increase the precision of 
its estimate. In order to do this effectively, all elements 
contributing to the experimental error should be included in 
the replication process. For some experiments, replication 
may be limited to repetition under essentially the same con- 
ditions, such as the same facility or location, a short time 
interval or a common-batch of materials. 

For other experiments requiring more general results, 
replication may require deliberately different, though 
similar, conditions, such as different facilities or locations, 
longer time intervals or different batches of materials. 

In some experiments, a ‘pseudo-replication’ occurs 
when factors which produce no effect (average or 
differential) are included in the experiment, 

When a subset of the treatments within an experi- 
ment is repeated, this is generally referred to as 
‘partial replication’. 

2.10 Duplication 

The execution of a treatment more than once under 
similar conditions. For example, repetition of the 
same treatment to different experimental units in 
the same block. 

NOTE-Duplication, as contrasted to replication, refers to 
a single element of an experiment. Duplication usually invol- 
ves a fresh experimental unit, such as a newsample, or, wh~en 
a single unit is involved, an independent resetting of the levels 
of the factors being studied on that unit. When duplicate 
observations are made on the same sample or unchanged 
settings, these should be identified as duplicate observations 
rather than as ‘duplicates’ to reflect the narrower degree of 
duplication. Recent usage has broadened the definition of 
duplication to more than once rather than restricting it to 
twice. 

2.11 Randomization 

Qe procedure used to allot treatments at random 
to the experimental units. 

NOTES 

1 An essential element in the design of experiment is to 
provide estimates of effects free from biases due to un- 
detected assignable causes. Randomization is a process to 
minimize this risk. Theoperational procedure for assignment 
‘at random’ involves the~use of Random Numbers or some 
similar method for assuring that each unit has an equal 
chance of being selected for each treatment. 

2 Randomization provides independence in the 
observations. 

2.12 Main Effect; Average Effect 

A term describing ameasure for the comparison of 
the responses at each level (version) of a factor 
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averaged over all levels (versions) of other factors 
in the experiment. 

NOTE - It should be noted that even though a ‘maineffect’ 
is indicated to be small, this does not necessarily mean that 
the factor is not important. Large effects of the factor may 
result at various levels (versions) of other factors, but may 
differ in sign and/or magnitude. 

The process of averaging in these cases would tend to make 
the ‘main effect’ appear smallersee 213. 

In a model, the term ‘main effect’ may describe the 
parameter or the estimate of this parameter 
see 2.21. 

2.13 Interaction 

A term describing a measure of dependence of the 
level (version) of one factor on the level(s) of other 
factor(s) by providing the differential comparison 
of the responses for each level (version) of the 
factor on each of the several levels (versions) of 
other factor(s). 

NOTE - Confounding is an important technique which 
permits the effective use of specified blocks in some experi- 
ment designs. This is accomplished by deliberately pre- 
selecting certain effects or differential effects, as being of 
little interest, and planning the design so that they are con- 
founded with block effects or other pre-selected principal 
factor or differential effects, while keeping the other more 
important effects free from such complications. Sometimes, 
however, confounding results from inadvertent changes to a 
design during the running of an experiment or from incom- 
plete planning of the design, and it diminishes or invalidates 
the effectiveness of an experiment. 

NOTE - When an interaction is determined lo be of suffi- 
cient magnitude, it is implied that the effect of variation 
within the factor is dependent upon the levels (versions) of 
the other factors. Since an ‘interaction’ indicates a ‘differen- 
tial effect’. The effects of these factors should not simply be 
described in terms of averages over all levels (versions) of the 
other factors (‘main effects’) involved, but separately for 
each such level (version). 

The confounded factorial design (3.16) and fac- 
torial experiment with partial confounding (3.17) 
are examples of confounding effects or differential 
effects (interactions) with block effects. See frac- 
tional factorial design (3.19) and aliases (2.18), 
each effect is confounded with one or more other 
effects. 

2.15 Contrast 

Example : 

Factor A Average 
effect of B 

A linear_function of the observations or parameters 
for which the sum of the coefficients is zero. With 
observations Yr, Y2 . . . .Y,, the linear function alY1 
+ aaY2 + . . . .+ anYn is a contrast if and only if, 
Z ai = 0; not all ai’s are equal to zero. 

Example 1: 

Factor B Version 1 2 3 

Version 1 10 22 28 20 

2 20 20 20 20 

Average 15 21 24 
effect of A 

An interpretation of these results, assuming little 
experimental error, is that changes in version of, 
factor A affect the responses when using version 1 
of factor B, but do not affect the responses when 
using version 2. Also, changes in version of factor 
B affect the responses when using version 1 of factor 
A in an opposite direction to when version 3 of 
factor A is used, etc. Note that the response of 
factor A at version 2 of factor B would show no 
effect. If the results for version 2 of factor B had 
been 8, 20 and 26, there would be no interaction 
since the differences between the results of the two 
versions of Sat each version ofA (or the 3 versions 
of A at each version of B) would be constant. 

A factor is applied at three levels and the results are 
represented bv Al, AZ, AS If the levels are equally 
spaced, the first question it might be logical to ask 
is whether the@ is an overall linear trend. This 
could be done by comparing AI and A3, the ex- 
tremes ofA in the experiment. A second-question 
might be whether there is evidence that the 
response pattern shows curvature rather than a 
simple linear trend. Here the average of A1 and A3 
could.be-compared to A2 (If there is no curvature, ‘. 
A2 should fall on the connecting AI and A3 or, in 
other words, be equal to their average). 

Response AI A2 A3 

Contrast coefficients - 1 0 +1 
for question 1 
Contrast 1 -At +A3 

Contrast coefficients -1n +1 -112 
for question 2 
Contrast 2 - 1/2A1 +A2 -1i2A3 

An interaction involving two factors @B) is called This example illustrates a regression type study of 
a ‘two-factor interaction’ one involving three equally spaced continuous variables. It is frequent- 

factors (ABC) is called ‘three-factor interaction’, ly more convenient to use integers rather than 

etc. fractions for contrast coefficients. In such a case, 

2.14 Confounding 

Combining indistinguishably the main effect of a 
factor or a differential effect between factors(inter- 
actions) with the effects of other factor(s), block 
factors(s) or interaction(s). 
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the coefficients for contrast 2 would appear as 
(- 1, +2, - 1). 

Example 2: 

Another example dealing with discrete versions of 
a factor might lead to a different pair of questions. 
Let us suppose there are three sources of supply, 
one of which, At, uses a new manufacturing tech- 
nique while the other two, A2 and As use the 
customary one. First, does vendor AI with the new 
technique seem to differ from A2 and A3 which are 
using the old one? Contrast A1 &th the average of 
A2 and A5 Second, do the two suppliers using the 
customary technique differ? Contrast A2 and AS 
The pattern of contrast coefficients is similar to 
that for the previous problem, though the 
interpretation of the results will differ. 

Response AI A2 A3 

Contrast coefficients -2 +1 +1 
for question 1 
Contrast 1 -2A1 +A2 +A3 

Contrast coefficients 0 -1 +I 
for question 2 
Contrast 2 -A2 +A3 

NOTE - The coefficients for a contrast may be selected 
arbitrarily provided that pi = 0 condition is met. Questions 
of logical interest from an experiment may be expressed as 
contrastswith carefully selected coefficients. See examples 1 
and 2 above. Asindicated in the examples, the response for 
each treatment combination will have a set of coefficients 
associated with it. Sometimes the term ‘contrast’is used only 
to refer to the pattern of the coefficients, but the usual 
meaning of this term is the algebraic sum of the responses 
multiplied by the appropriate coefficients. 

2.16 Orthogonal Contrasts 

Two contrasts are orthogonal if the contrast 
coefficients of the two sets satisfy the condition 
that, when multiplied in corresponding pairs, the 
Sum of those products is equal to zero. , 

Example 1: 

At A2 A3 

ai1 Contrast 1 -1 0 + 1 

ai Contrast 2 0 -1 +1 

ailai2 0 0 +1 

X ait ai = 1 Therefore, not orthogonal 

Example 2: 

AI A2 A3 

ai1 Contrast 1 - 1 0 +1 

ai Contrast 2 -1 +2 -1 

ail ai2 +1 0 -1 

2 ai, ai = 0 Therefore, orthogonal 

2.17 Orthogonal Array 

An array of order kxN with entries from a set of s 
symbols is an orthogonal array with k constraints 
(or factors), N assemblies, s symbols and strength t, 
if in txNsub-arrayof thekxNarray, every ordered 
t-plet of s symbols occurs equally often. 

NOTE - The columns of an orthogonal array form the 
various factors and rows represent the (N) treatments. 

2.18 Aliases 

Two or more effects (main or interaction) in a 
fractional factorial experiment, a linear combi- 
nation of which is estimable but they can not be 
estimated separately. 

NOTES 

1 In a 2” fractional factorial design, the aliases can be deter- 
mined once the ‘defining contrast’ (in the case of a half 
replicate) or ‘defining contrasts’ (for a fraction smaller than 
half) are stated. The defining contrast is that effect (or 
effects), usualiy thought to be of no consequence, about 
which all information may be sacrificed for the experiment. 
An identity I is equated to the defining contrast 
contrasts) and using the convention that A2 = I 21 

or definmg 
B = C - I, 

the multiplication of the letters on both sides of the equation 
shows the aliases In the example of 3.19 

I = ABCD 
so that, A = A*BCD = BCD 
and AB = A*B*CD = CD 

Here A and BCD are aliases. If we assume that one of them 
is negligible, the other can be estimated. 

2 With a large number of factors (and factorial treatment 
combinations) the size of the experiment can be reduced to 
l/4,1/8, or in general to ld to form a 2”’ fractional factorial 
experiment. 

3 There exist generalizations of the above to fractional 
factorials having more than 2 levels. 

2.19 Predictor Variable 

A variable the levels (versions) of which are 
selected, such as a factor level in an experiment, 
whether the selection is in the controlof the 
experimenter or not. 

NOTE - This~is sometimes referred to as an ‘independent 
variable’. 

2.20 Response Variable 

The variable that shows the observed results of an 
experimental treatment. 

NOTE - This is sometimes referred to as the ‘dependent 
variable’. 

2.21 Model 

An equation which is intended to provide a func- 
tional description of the observations/sources of 
information in terms of parameters. The form of 
the model can be expressed as: 
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Observed value = Z(Parameters or terms 
representing assignable 
causes/factors) 

f Z(Ranclom variables rep- 
resenting assignable effects) 

+ Random variable repre- 
senting non-assignable 
effects (also called residual 
error) 

NOTE-The assumptions about the residual errorcom- 
ponent are as under: 

a) The expected value of each residual random variable is 
zero. 

b) The residual random variablesare mutually independent. 

c) All the residual random vaiiables have the samevariance. 

d) Each of residual random variable is normally distributed. 

Example: 

Two quantitative factors (Xl) at two levels and (X2) 
at three levels, are to be studied in a 2x3 factorial 
experiment (see 3.12) with replication in two blocks 
(a randomized block design). If it is assumed, as is 
frequently the case, that the response pattern can 
be approximated by a polynomial model, the fitted 
equation of the model can be written as: 

Y =Bo+BlXl +B~XZ+B~~X$+BIZXIX~+ 
BbXb + e 

where 
Y = 

Bo = 
BI = 
B2 = 
Bz = 
B12 = 

observation corresponding to a 
treatment 
constant 

Bb = 

e = 

linear effect of factor Xl 
linear effect of factor X;! 
curvature effect of factor X2 
Interaction (Differential) effect of 
the two factors (linear) 
effect of blocks, and 
random error 

2.22 Response Surface I 

It is a functional relationship between the predictor 
variable-and the response variable. 

NOTE- Asequential form of experimentation is often used 
in conjunction with the mapping of response surfaces in 
which the responses of the earlier phases are used to help 
predict where to-select additional treatment combinations 
for study so as to optimize results efficiently. 

2.23 Evolutionary Operation (EVOP) 

A sequential form of experimentation conducted in 
production facilities during regular production. 

NOTE-The principal theses of EVOP are that knowledge 
to improve the process should be obtained along with a 
product, and that designed experiments using relatively small 
shifts in factor levels (within production tolerances) can yield 
this knowledge at minimum cost. Change ofversions (levels) 
of the factors forany EVOP experiment is usually quitesmall 
in order to avoid making out-of-tolerance products, and this 
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may require considerable replication so as to improve the 
efficiency of comparison of the effect of the change in levels. 

TYPES OF DESIGNS 

3.1 Completely Randomized Design 

A design in which the treatments are assigned at 
random to the full set of experimental units. 

NOTES 

1 No block factors are involved in a completely randomized 
design. 
2 Completely randomized design is advocated only under 
the assumption that all the experimental units are more or 
less homogenous. 

3.2 Randomized Block Design 

A design in which the experimental units are 
grouped into blocks, the units within each block 
being more homogenous than units in different 
blocks. Each block contains as many experimental 
units as there are number of treatments, each treat- 
ment appearing precisely once in each block. The 
treatments are randomly allocated to the 
experimental units within each block and 
replicated in several blocks with a separate 
randomization for each block. 

Example : 

Four treatments A, B, C and D are assigned at 
random to the experimental units in each of three 
blocks. 

Block 

=_ 

3.3 Latin Square Design 

A design. with two blocking factors where the n 
levels (versions) of a factor are allocated to n2 
experimental units arranged in n rows or n columns 
in such a manner that each level (version) appears 
exactly once in each row and exactly once in each 
column. The rows and columns represent leveli of 
two blocking factors. 

Example (n = 4) Factor 2 (columns) 

Factor 1 1 A B C D 
(rows) 

2BCDA 

4 E D A B C 

The treatments are shown by the-Latin letters. 

3 C DAB 

NOTE - Latin square designs are generally used to 
eliminate two block effects, not of primary interest in the 
experiment, by ‘balancing out’ their contributions. The 
blocks are customarily identified with the rows and columns 
of the square. For example, the rows might be days and the 
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columns operators. The number of versions (n) of the prin- 
cipal factor and of each of the block factors has to-be the 
same. Randomization can be achieved by assigning at ran- 
dom the versions of the principal factor to the letters, ran- 
domly selecting a Latin square from the listings or by the 
procedures described in statistical tables and assigning the 
versions of the block factors at random to the rows and 
columns of the square [There are: 1 (2-x2); 12 (3x3); 576 
(4x4); 161280 (5x5) Latin squares. Of these, there are: 
1(2x2); 1(3x3); 4(4x4); 56(5x5) ‘standard’ Latin squares 
in which the first row and first column are in alphabetical 
order, and from which the other Latin squares can be derived 
by permuting the rows and columns]. 

A basic assumption is that these block factors do 
not interact (cause differential effects) with the 
principal factor under study, or among themselves. 
If this assumption is not valid, the measure of 
residual error will be increased, and the effect of the 
factor is confounded with such interactions. The 
design is particularly useful, when the assumptions 
are valid, for minimizing the amount of the ex- 
perimentation. Sometimes other principal factors 
are used in the block positions so that there may be 
three principal factors without any block factors. 
This is equivalent-to a fractional factorial with the 
assumption of no interactions. Some fractional 
factorial designs ~form LaWsquares and it may be 
more desirable to approach the problem from the 
fractional factorial viewpoint to understand the 
assumption-being made concerning interactions. 

3.4 Graeco-Latin Square Design 

A design with three blocking factors where the n 
levels (versions) of a factor are allocated to .* 
experimental units arranged in n rows and n 
columns in such a manner that each level (version) 
appears exactly once in each row and exactly once 
in each column and also appears with greek letter 
exactly once. The rows, coluirms and greek letters 
represent levels of three blocking factors. 

Example (n = 4) Factor 2 (columns) 
, 

Factor 1 1 
(rows) 

2 

3 

4 

Factor 3 - Latin letters 
Factor 4 - Greek letters 

NOTE- The comments in the note in 3.3 are also pertinent 
here, modified by the extension to four factors. Graeco- 
Latin squares are. generally used to eliminate three block 
effects. A Graeco-latin square dots not exist for squares of 
size 6. 

A generalization of the Graeco-Latin square for 
more than four factors is known as the ‘hyper 
Graeco-Latin square’. 

3.5 -Incomplete Block Design 

A design in which the experimental units are 
grouped into blocks in which there are insufficient 
number of experimental units available within a 
block to run a complete set of treatments 
(‘replicate’)~of the experiment. 

3.6 Balanced Incomplete Block Design (BIBD) 

An incomplete block design in which each block 
contains the same number k of different versions 
from the t versions of a single principal factor 
arranged so that every pair of versions occurs 
together in the same number 1 of blocksfrom the 
b blocks. 

Erample : 

t = 7,k = 4,b = l,A= 2 

Block 

NOTE - The design implies that every version of the 
principal factor appears the same number of times ruin the 
experiment and that the following relations hold true: 

Versions of the 
principal factor 

1 2 3 6 
2 3 4 7 
3 4 5 1 
4 5 6 2 
5 ~6 1 3 
6 7 1 4 
7 1 2 5 

bk = tr, r (k-l) = 1(t-1) and b 1 t 

For randomization, arrange the blocks and versions 
within each block independently at random. Since 
each letter in the above equations represents an 
integer, it is clear that only a restricted set of com- 
binations (t, k, b, r, A) is possible for constructing 
balanced incomplete block designs. However, given 
5 integers (t, k,b, r, d) satisfying the above 3 condi- 
tions, it is not necessary that a BIBD will exist. 

3.7’ Partially Balanced Incomplete Block Dksi& 
(PBIBD) 

An incomplete block design with t treatments and 
b blocks is called a PBIBD with m ( 12 ) associate 
classes if: 

a) 

b) 
Cl 

Each block contains k ( < t) distinct treat- 
ments 
Each treatment appears in r blocks 
There exists a relation among treatments 
satisfying, the following conditions: 

i) any two treatments are either lst, 2nd, 
. . . , mth associates, the relation being 
symmetric, that is, if a treatment p is 
the I~ associate of a then so is a to #; 
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ii) each treatment has ni~l”h associate, 
i = 1,2, . . . . ,m; the number ni being 
independent of the treatment 
chosen; 

iii) given a pair of treatments (a , b) which 
are mutually z* associates, the number 
of treatments that are simultaneously 
j” associate of a and @ associate of 
p is&, i, j, k = 1,2,. . . m. The number 
piL is independent of the pair 
(a , j?) of i’ associate. 

d) &Y two -treatments that are mutually i”h 

9 

associates appear together in li blocks 

(i = 1,2, . . . , m), not all d;s are equal. 
The integers, t, b, r, k, 11,&,. . . . , &,,,nl, 

n2, . . . . . n,and& i,j,k= 1,2 ,...., m&led 
the parameters of a PBIBD, are connected 
by the following relations: 
fr = bk 
ni+nz+...+ nm = t-l 
nlAl+n2&+...+ nmAm = r(k-1) 
&+ = nj - 6 i j where , 6, is the 
Kronecker 

delta taking the value 1 if i = j and 0, 

otherwise n& = ng& = nkpfj 

NOTE - PBIBD is an incomplete block design in which 
each block contains the same numberk of different versions 
from the I versions of the principal factor. They are arranged 
so that not ail pairs of versions occur together in the same 
number of the b blocks; some versions can therefore be 
compared with greater precision than others. The design 
implies that every version of the principal factor appears the 
same number of times r in the experiment. 

Example: 

t=6,k=4, b=6,r=4,nl=l,nz= 4,rZ1= 4, 
12=2 

Block 

Versions of the 
principal factor 

2 5 3 6 
3 6 1 4 
4 1 5 2 
5 2 6 3 
6 3 4 1 

In this design every version occurs r = 4 times and 
if we start with any version (for example, 
version l), we find nl = 1 version (for example, 
version 4) that appears together with version 1 in 
11 = 4 blocks and n2 = 4 versions (No. 2,3,5 and 
6) that appears together with version 1 in 12 = 2 
blocks. These parameters nl, n2, Al and A2 are the 
same whatever the starting version may be, 
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3.8 Youden Square Design 

A type of design with two block factors called as 
rows and columns with the number of levkls of one 
of the blocking factors~say, columns, equals the 
number of treatments and the other block factor 
has levels smaller than the number of treatments. 
The treatments areallocated in such a manner that 
every treatment appears once in each row and the 
columns when treated as blocks form a BIBD. 

Example : 

4x7 Youden Square Design 

zi 

NOTE- It can be seen that tows form a Randomized block 
design and columns a BIBD with parameters, t = 7 = 6, 
r=k=4,1=2. 

3.9 Split-Plot Design 

A design in which the group of experimental units 
(plot) to which the same version of a principal 
factor is assigned is subdivided (split) so that one 
or more additional principal factors may be studied 
within each version of that factor. 

Example: 

Three versions of factor A are tested in two 
replicate runs. Within each version ofA, the same 
two versions of factor B are studied. 

Replicate I Replicate II 

Plot A1 1 

;:, Bi Ei 

NOTE - In the example, replicates setve the role of blqcks 
to the first-stage principal factor (A) and each plot assigned 
to eve of the three versions of A serves the role of blocks for 
the additional second-stage principal factor B (within plot 
factor) studied within k Thus, the experimental error for the 
within-plot factor B should be smaller than that for the full 
experiment (if there indeed is some effect of varying the first 
factor). In a split-plot design, different measures of residual 
error are obtained for the within-plot and the between-plot 
effects. It is possible to extend this design further in order to 
introduce a third-stage factor. This type of design is frequent- 
ly used where large runs or areas are obtainable from a factor 
the levels of which are not easily changed, and the other 
factors can be varied readily within the runs or areas. 

This type of arrangement is common in industrial experimen- 
tation as well as in agriculture (whence the name is derived). 
Frequently, one series of treatments requires a larger ex- 
perimental unit while another series can be compared with 
smaller amounts. For instance, the comparison of different 
typesof furnaces used to prepare~analloy would needgreater 
amounts of alloy than the comparison of different types of 
moulds into which the alloy might be poured. The types of 
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furnaces are regarded as the vetsions of the first-stage factor 
and the types of moulds as theversions of the second stage 
(within-plot) factor. Another example is a large machine the 
speed of which can be changed only by replacing the gear 
train, a timeconsuming and expensive task, so that infre- 
quent changes to this factor are desired. The material 
manufactured at each speed can be heat-treated by several 
techniques, shaped under varying pressures and smoothed 
using different polishing agents with relative ease of shifting 
from one level (version) of these factors to another. These 
latter constitute the within-plot factors (or second-stage fk- 
tot-s) while the speed variations constitute the between-plot 
factor (or first-stage factor). 

3.10 Split-Block Design; Two Way Split-Plot 
Design 

A split-plot design in which the versions of the 
second-stage factor, instead of being randomized 
independently within each plot, are arranged in 
strips across plots in each replication. Thus, it is 
considered as a split-plot design in two different 
ways. 

Example: 

For a 3 x 4 design, the appropriate arrangements (after randomization) might be as shown below: 

B3 Bt I32 Bq BI B4 B2 B3 BI B3 B2 B4 

A2 AI A2 

A3 A2 A1 

A1 A3 A3 

NOTE -The design sacrifices precision on the main effects (average effects) of A and B in order to provide higher precision 
on the interactions (differential effects), which will generally be more accurately determined than in either randomized blocks 
or the ordinary split-plot design. 

In industrial experimentation, practical considerations sometimes necessitate its use; for example, in the textile industry, factor 
A may be different procedures of bleaching by chlorine peroxide and factor B those of rising by different amounts of hydrogen 
peroxide in the cooling process. 

_ 

3.11 Miiure Experiment 

An experiment in which two or more ingredients or 
components shall-be mixed and the response is a 
property of the resulting mixture that does not 
depend upon the amount of the mixture. The 
proportions of each of theq components (Xi) in the 
mixture shall satisfy the conditions 0 5 Xi I 1 and 

3 Xi = 1; and each experimental point is defin&l in 
i=l 

terms of these proportions. 

NOTES 

1 In some fields of application the experiment mixtures are 
described by the terms ‘formulation’ or ‘blend’. The use of 
mixture designs is appropriate for experimenting with the 
formulations of manufactured products, such as paints, 
gasoline, foods, rubber and textiles. 

2 In some applications, the proportions of the components 
of the mixture may vary between 0 and 100 per cent of the 
mixture (‘mmplete domain’). In others, there may be opera- 
tive restraints, so that at least one component cannot attain 
0 or 100 per cent (‘reduced domain’). 

3.12 Factorial Experiment (general) 

An experiment in which all possible treatments 
formed with two or more factors, each being studied 

at two or more levels (versions), are examined so 
that interactions (different effects) as well as main 
effects can be estimated. 

NOTE - The term is descriptive of obtaining the various 
factors in all possible combinations, but in itself does not 
describe the experiment design in which these combinations, 
or a subset of these combinations, will be studied. 

The most commonly used designs for the selected arrange- 
ment of the factorial treatment combinations are the com- 
pletely randomized design, the randomized block design and 
the balanced incomplete block design, but others Also are 
used. 

A factorial experiment is usually described symboli- 
cally as the product of the number of levels 
(versions) of each factor. For example, an experi- 
ment based on 3 levels of factorA, 2 levels of factor 
B and 4 levels of factor C would be referred to as a 
3x2x4 factorial experiment. The product of these 
numbers indicates the number of factorial 
treatments. 

When a factorial experiment includes factors all 
having the same number of levels, the description 
is usually given in terms of the number of levels 
raised to the power equal to the number of factors, 
n. Thus an experiment with three factors all run at 
two levels would be referred to as a 23 factorial 
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experiment (n being equal to 3) and has 8 factorial 
treatments. 

Some commonly used notations for describing the 
treatments for a factorial experiment are: 

a) Use a letter to indicate the factor and a 
numerical subscript the level (version) of 
the factor, for example, three factors ,4, B 
and C in a 2 x 3 x 2 factorial experiment. The 
12 combinations would be: 

At Br Cl, A2B1 Cl, A1 B2C1, AzBzCl, 
Al&Cl, AzBsCl, AIBICZ, A&CL 
AIBzCZ, AzBzC2, AIBSCL AzBsC2 

Sometimes only the subscripts, listed in the 
same order as the factors, are used, such as: 

111, 211, 121, 221, 131, 231, 112,212, 122, 
222,132,232 

Alternatively, one can denote the first, 
second and the third level by 0, 1 and 2 
respectively to obtain the following 
combinations: 

000, 100,010, 110,020, 120$01, 101,011, 
111,021,121 

b) Describe the levels in terms of the number 
of unit deviations from the centre level, in- 
cluding sign. In the case of an even number 
of levels where there is no actual treatment 
at the centre level, the coefficients describ- 
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ing the levels are usually given in terms of 
half-unit deviations. For example, with two 
levels, if a unit of deviation between these 
levels is 4 mm, the -1~coefficient might be 
assigned to 3 mm and the + 1 to 7 mm with 
0 being assigned to the non-included 5 mm 
level. In the above example the code would 
appear as 

(-1, -1 ,- 1 ); (+ l,- 1,-l ); 
( -1, O,- I); (+ LO,- I); 
(- 1,+ 1, - 1); (+l, + 1, -1); 
( -1, -1, + 1 ); ( + 1, -1, +l); 
( - I, 0, + 1); (+l, 0, +I ); 
( -1, + 1, +1 ); ( +1, +1, +l); 

This descriptive coding has many 
advantages, particularly in analysing 
contrasts when levels are equally spaced. 
Unequal spacing of the levels or weighted 
emphasis for the various levels can also be 
reflected in the coefficients. 

3.13 2n Factorial Experiment 

A factorial experiment in which n factors are 
studied, each at two levels (versions). 

NOTE-The 2” factorial experiment is a special ease of the 
general factorial experiment (see 3.12). A popular code for 
representing treatments in a 2” factorial experiment is to 
indicate a factor at a high level by the corresponding small 
letterand theletter isomitted when the factorisat a lowlevel. 
When all the factors are at low level the treatment code is (1). 

Example illustrating the Note above: 

A 23 factorial experiment with factors A, B and C: 

Level 

Factor A J.AW High Low High Low High Low High 
Factor B Low Low High High Low Low High High 
Factor C Low Low Low Low High High High High 

Code (1) a b ‘ab C ac bc abc 

This type of identification has advantages for is the contrast for studying the effect of factor B at 
defining blocks, confounding and forming aliases. the ‘low’ level ofA plus the contrast for studying the 

Factorial experiments, regardless of the form of 
effect of factor B at the ‘high’ level of A. 

analysis used essentially involve forming contrasts 
of various treatments. 

AB:rL-Flj;[a-(1)] = [“b-a]- 

Example illustrating contrasts: is the contrast of the contrasts for studying the 

In a 2” factorial experiment with factors A and B 
effects of factor A at the ‘high’ level ofB and at the 
low level of B or the contrast of the contrasts for 

A: [a-(l)] + [ab -b] studying the effects of factor B at the ‘high’ level of 

is the contrast for studying the effect of factor A at A and at the ‘low’ level of A. 

the ‘low’ level ofB plus the contrast for studying the E 
effect of factor A at the ‘high’ level of B. 

ac contrast can be derived from ‘symbolic h 

product’of two terms, these terms being of the form 
B: [b-(l)] + [ab -a] (a 2 l), (b 2 l),where - 1 is used when the capital 
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letter (A, B) is included in the cOntrast and + 1 when 
it is not. 

Thus, 
A : (a -1) (b + 1) 
B : (a + 1) (LJ - 1) 
AB: (a -1) (b - 1) 

fiese expressions are usually written iti a standard 
order. In this case, 

A : - (1) + a - b + ab 
B : 

-::,’ 
-u+b+ub 

AB: -U -b+ub 

Note that the coefficient of each treatment com- 
bination in AB (+l or -1) is the product of the 
corresponding coefficients in A and B. This proper- 
ty is general in Yfactorial experiments. After nor- 
malization, the A term represents the effect of A 
averaged over the two levels of B, that is, a ‘main 
effect’ or ‘average effect’. Similarly B represents the 
average effect of B over both levels of A. The AB 
term contrasts the effect ofA at the high and the 
low levels of B (or the effect of B at the high and 
low levels ofA), that is, an ‘interaction’or ‘differen- 
tial effect’. 

3.14 Completely Randomized Factorial Design 

A factorial experiment (including all replications) 
run in a completely randomized design. 

3.15 Randomized Block Factorial Design 

A factorial experiment run in a randomized block 
design in which each block includes a complete set 
of factorial treatments. 

3.16 Confounded Factorial Design 

A factorial experiment in which only a fraction of 
the treatments are run in each block and where the 
selection of the treatments assigned to each block 
is arranged so that one (or more) prescribed 
effect(s) is (are) confounded with the blppk 
effect(s), while the other effects remain free from 
confounding. All factor level combinations are 
included in the experiment. 

Example: 

In a 23 factorial experiment with only room for 4 
treatments per block, the ABC interaction 
[ABC : - (1) + a + b - ub + c - UC - bc + ubc] 
can be sacrificed through confounding with blocks 
without loss of any other effect if the blocks include: 

Block 1 Block 2 

(1) U 

ab b 

UC C 

bc ubc 

NOTE - The treatments to be assigned to each block can 
be determined once the effect(s) to be confounded is (are) 
defined. Where only one effect is to be confounded with 
blocks, as in thii example, the treatments with a positive sign 
are assigned to one block and those with a negative sign to 
the other. There are generalized rules for more complex 
situations. A check on all the other effects (A, B, 43, etc) 
will show the balance of the plus and minus signs in each 
block, thus eliminating any confounding with blocks for 
them. 

3.17 Factorial Experiment with Partial 
Confounding 

A factorial experiment with several replicates in at 
least one of which some main effects or 
inter- actions, confounded in other replicates are 
free from confounding. 

-Example: 

In a 23 factorial experiment requiring the use of 
blocks of 4 (see 3.16) and carried out with 2 
replicates, the following arrangement is selected so 
that theABCinteraction is confounded in replicate 
1 and the BC interaction in replicate 2: 

Replicate 1 Replicate 2 

Block 1 Block 2 Block 1 Block 2 
mm 

:: 
a (1) b 
b 

UC C bat 

C 

ub 
bc ubc abc UC 

The estimate of BC can be obtained only from 
replicate 1 and that of ABC only from replicate 2. 
The remaining estimates ofA, B, C, AB and AC 
are obtainable using both replicates and therefore 
will have greater precision. 

3.18 Factorial Experiments with Total 
Confounding 

A factorial experiment with several replic+s in 
which some interactions or main effects are 
confounded in all replicates. . 

3.19 Fractional Factorial Design 

A factorial experiment with only an adequately 
chosen fraction of the treatments required for the 
complete factorial experiment. This procedure is 
sometimes called ‘fractional replication’. 

NOTE - The fraction selected is obtained by choosing one 
or several ‘defining contrasts’ which are considered of minor 
importance, or negligible, generally interaction(s) of high 
order. These ‘defining contrasts”cannot bc estimated and 
thus are sacrificed. By ‘adequately chosen’ is meant selection 
according to specified rules which include consideration of 
effects to be confounded and aliased. 

Fractional factorial designs are often used very 
effectively in screening tests to determine which 
factor or factors are effective, or as part of a sequen- 
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tial series of tests, but there are risks of getting 
biased estimates of main effects or of misjudging 
the relative importance of various factors. When 
there is a large number of factor level combinations 
resulting from a large number of factors to be 
tested, it is often impracticable to test all the com- 
binations with one experiment. In such cases resort 
may be made to a fractional, that is partial replica- 
tion. The usefulness of these designs stems from the 
fact that, in general, higher order interactions are 
not likely to occur. When this assumption is not 
valid, biased estimates will result. 

Example: 

Two half-replicates of a 24 factorial experiment 
(see 3.13) for the code interpretation with defining 
contrast : ABCD 

+ 

abed abc 
ab abd 
ac acd 
ad bed 
bc 
bd ZJ 
cd 

(1) : 

Either of these half-replicates can be used as a 
tfractional replicate’. 

NOTE - In the example, the factorial combinations in the 
first column are those with the a ‘+’ (plus) sign in the 
development of the symbolic product of theAED ‘defining 
contrast’ as illustrated in the example of 3.13. 

ABCD : ((I - 1 )(b - l)(c - 1 )(d - 1) 

Those factorial combinations in the second column are those 
with a - (minus) sign. 

Because only those elements of the ABCD interaction having 
the same sign are run, (no ALICD contrast measure is 
obtainable) so that the&CD interaction is completely con- 
founded and inestimable. In addition, it will be found ttt’at 
because only half of the full factorial experiments is run, each 
contrast representstwo effects. 

From the + sign fractional replicate in the above 
example, we would compute the factorial effects as 
follows: 
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A : abed + ab + ac + ad - bc - bd - cd - 
(1) : BCD 

AB:abcd+ab+cd+(l)-ac-ad-bc- 
bd :CD 

Effects represented by the same contrast are named 
‘aliases’. Note that, had the complete set of fac- 
torial treatments been run instead of only half of 
them, the estimates of the A and BCD or AB and 
BC effects would no longer be identical. That is 

A : (a - 1) (b + 1) (c + 1) (d + 1) 

is not equal to 

BCD: (a+l) (b-l) (c-l) (d-l) 

when all 16 combinations are included instead of 
only 8. This example, and the comments thereon, 
have been limited to the 2” factorial experiments. 
A comparable, but more difficult, approach is 
available when there are more than two versions, 
but another approach to these situations is through 
the use of the composite design defined in 3.21. 

3.20 Orthogonal Design 

A design in which all the effects can be estimated 
independently of one another. 

A necessary and sufficient condition for a design to 
be an orthogonal design is that each level of one 
factor occurs with each level of the other factor with 
proportional frequency. 

Mathematically, this condition may be rewritten as 
follows: 

tlij = 
nij . X tZj 

N 
for every combination of (i, j) level and every ~pair 
of columns. 
where 

nij = 

ni = 

nj = 

N = 

number of times the level combination 
(i, j) occurs in any two columns, 

number of times the level i occurs inbne 
column, 

number of times the level j occurs in the 
other column, and 

Total number of experimental units. 
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Example 

Table-of orthogonal design derived for l/2 replicate of a 24 factorial experiment is shown below: 

Treatment Array No. Treatments for 
No. full 23 l/2 replicate 

1 2 3 4 5 6 7 factorial of 24 factorial 
experiment experiment 

1 -1 -1 1 -1 1 1 -1 (1) (1) 
2 1 -1 -1 -1 -1 1 1 a ad 
3 -1 1 -1 -1 1 -1 1 b bd 
4 1 1 1 -1 -1 -1 -1 ab ab 
5 -1 -1 1 1 -1 -1 1 C cd 
6 1 -1 -1 1 1 -1 -1 ac ac 
7 -1 1 -1 1 -1 1 -1 bc bc 
8 1 1 1 1 1 1 1 abc abed 

23 Factorial 
contrast name 

l/2 replicate 
24 (or24-1) 
fractional 
factorial 
contrast name 

NOTE-O~rthogonaldesignSincludeawidevarietyofspecialdesignssuch asalatinsquaredesign (3.3),acompletely randomized 
factorial design (3.14) a fractional factorial design (3.19) and so forth, which are already defined or derived. It is also possible, 
and useful, to construct an orthogonal design by using appropriate tables of orthogonal arrays in which the sum of products of 
elements in any pair of arrays, adjusted by the mean of the array, is equal to zero. 

Statistical analysis of the results from experiments 
using orthogonal designs is generally relatively 
simple since each main effect and interaction may 
be evaluated independently. However, non- 
orthogonal designs, which may be planned or 
accidental (such as by the loss of data due to missing 
tests or gross errors), lead to more difficult, or 
sometimes impossible, statistical interpretation. 
The degree of difficulty is dependent on the nature 
of the non-orthogonality. See the first note in 4.6. 

3.21 Composite Design 
1 

A design developed specifically for fitting second 
order response surfaces to study curvature, con- 
structed by adding further selected treatments to 
those obtained from a 2” factorial (or its fraction). 

Example: 

If the coded levels of each factor are - 1 and + 1 in 
the 2” factorial experiment [see notation (b) under 
comment on 3.12 factorial experiment (general)] 
the (2n + 1) additional combinations for a ‘central 
composite design’ are: 

(090, * . , 0), ( + a, 0,O. . . , 0 ), 
(0, k a, 0,. . . , 0), (O,O, . . . , + a). 

The total number of treatments to be tested is 
(2” + 2n +l) for a 2” factorial experiment. If 

2”-k’fraction is taken, the number of treatments to 
be tested is (T-k + 2n + 1). 

NOTE - For n = 2,3 and 4 fheexperiment requires, 9,lS 
and 25 units respectively, although additional duplicate runs 
of the centre point are usual, as compared with 9,27 and 81 
in the 3” factorial experiment. The reduction in experiment 
size results in confounding, and thereby sacrificing, all 
information about interactions. 

3.22 Nested Experiment; Dierarchical 
Experiment 

An experiment to examine the effect of two or more 
factors in which the same level (version) of a factor 
cannot be used with all levels (versions) of theother 
factors. 

Example: 

WY-x-j 

If two vendors are to be compared by evaluating two 
shipments from each, there ordinarily is no direct 
relationship between the first shipment of vendor 
A and that of vendor B or similarly for the second 
shipment. 

The differences between the two versions of the 
shipment factor of vendor A are nested within that 
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version of the vendor factor and, similarly, the 
differences between the two versions of the ship- 
ment factor of vendor B are nested within this 
other version of the vendor factor. 

NOTE-Generally, nested experiments are used to evaluate 
studies in terms of components of variance rather than in 
terms of differences in response levels or prediction models. 
See the note in 4.4. 

It is sometimes possible to redefine the factor into 
versions that can be compared across other factors 
if that makes a more meaningful question. For 
example, shipments 1 and 3 of the above example 
might represent Monday morning production and 
shipments 2 and 4 Friday afternoon production. 
The question could be framed in terms of Monday 
morningversus Friday afternoon production, which 
has a common thread, rather than in terms of two 
unrelated shipments. This would now represent a 
crossed [that is each level (version) of a factor is 
used with all levels (versions) of the other factors], 
rather than nested, classification and could be 
arranged as a factorial experiment. 

Vendor A B 

Day Monday 1 1 
Friday 2 2 

L I 

3.23 Fully Nested Experiment 

A nested experiment in which the second factor is 
nested within each level (version) of the first factor 
and each succeeding factor is nested within each 
level of the previous factor. 

Example: 

Factor A 

Factor C 
version 

Cl c2 c3 c4 cs C6 Cl CI 

t_ 

3.24 Staggered Nested Experiment 

Anested experimentin which the nested factors are 
run within only a subset of the versions of the first 
or succeeding factors. 

Example: 

In the example for a fully nested experiment (3.23), 
version Cs or C4 and C7 or C8 might be eliminated, 
so that factor C is studied in only versions 1 and 3 
of factor B. In this arrangement, the variability of C 
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would be estimated with only half the precision of 
the arrangement in 3.23. 

3.25 Partially Nested Experiment 

A nested experiment in which several factors may 
be crossed as in factorial experiments and other 
factors nested within the crossed combinations. 

NOTE - It is not unusual to find that experiments consist 
of both factorial and nested segments. See nested experiment 
(X22). 

4 METHODS OF ANALYSIS 

4.1 Method of Least Squares 

A technique of estimation of a parameter which 
minimizes Ze2, where e is the random error 
component from the model. 

NOTE -The experimental errors associated with the 
individual observations ordinarily are assumed to be 
independent, although the method may be generalized to the 
ease of correlated errors. The usual analysis of variance, 
regression analysts and contrast analysis are all based on the 
method of least squares and provide different computational 
and interpretative advantages stemming from certain 
balanceswithin theexperimental arrangementswhich permit 
convenient groupings of the data. 

4.2 Analysis of Variance (ANOVA) 

A technique which subdivides the total variation of 
a set of data into meaningful component parts 
associated with specific sources of variation for the 
purpose of testing some hypothesis on the 
parameters of the model or estimating variance 
components. 

An analysis of variance table usually contains 
columns for 

- source of variation (first column); 
- degrees of freedom (analogous to the 

. denominator n-l in the definition of sample 
variance s2) (D.F.) (second column); ’ 

- sum of squares (S.S.) (third column); 
- mean square (the sum of squares divided by 

the degrees of freedom) (M.S.) (fourth 
column). 

Another column ‘expected mean square E(M.S.) 
may often be added to serve as a guide showing 
which mean squares under the model are to be 
compared in an F-test. When the levels (versions) 
are selected at random, the expected mean squares 
show the composition of the ‘components of 
variance’assignable to the appropriate sources. See 
random effects model (4.4). 
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Example: 

In a randomized block design the observation obtained from the ? oft treatments in the/* of r blocks is 
denotedbyxi (i= 1,2 ,..., t;j= 1,2 ,..., r).’ Then the following ANOVA table is computed: 

Analysis of Variance (ANOVA) Table 

Block 

Treatment 

ittzzIF 
(D.F.) 

vg=r-1 

v,=t-1 

v, = (r - 1) (r - 1) 

v,=n-1 

sum 01 
scl- 
WV 

s,=rqqj-YL)2 
I 

S,xXZi(Yij-Yi.-Y.j+Y..) 
i i 

s,=zm(Yij-Y..)2 
i j 

-7 
( 

I 

1 

1 

2 

In the ANOVA table, 

ST=&+&+& 

VT = vt + VJj + v, 

F (M, Ml is the.;-statistic. 

The model associated with the observations is given 
as: 

Xj=p +CZi+&+eij; i= 1,2...,t; 
j= 1,2,...,r 

with 

XC?Zi’ = Zbj = 0: eij -N(O,d) 

where 

p is the general mean; 

ai is the effect of the ith treatment; 
/si is the effect of thejth block; and I 

e ij is the experimental error. 

For this example, it is assumed that selected (fured) 
levels are designated. 

The least square estimates of ,u, ai, /$ and C? are 
obtained by: 

; =Y ..=CZYij/rt 
i j 

h 
= Yi. -Y.. =zY.i/r 

= Y.j-Y..=iX./t 
i 

*2 
u 

= rz(Yij-X.-Y.j+Y..)2= 2 

i j [(f - l)(r- l)] SC 
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NOTE - Basic assumptions are that the effects due to all 
the sources of variation are additive and that the experimen- 
tal errors are independently and normally distributed with 

b 

zero mean and have equal variances (homoscedasticity) 
throughout all subdivisions of the data. The technique, in 
conjunction with the F ratio, is used to provide a teat of 
significance for the effects of these sources of variation 
and/or to obtain estimates of the variances attributable to 
these sources. The assumption of a normal distribution is 
required only for this test of significance and confidence 
intervals. Averages and interactions are usually looked at by 
summarizing in 2-way (or k-way) tables. This example as- 
sumes a jked effits model (see 4.3). When the assumption 
of normal distributions of error cannot be made, it is some- 
times possible to use transformations (for example 
logarithms, sine inverse, etc). 

4.3 Fled Effects Model 

A model in which the levels (versions) of all 
factors are fixed rather than random selections 
over the-range of versions to be studied for those 
factors. 

NOTE - With fiied levels, it is inappropriate to compute 
components of variance. 

4.4 Iiandom Effects Model / 

A model in which the levels (versions) of all factors 
are assumed to be selected at random from the 
distribution of versions to be studied for those 
factors. 

NOTE-With random levels, the primary interest is usually 
in obtaining components of variance estimates and it is inap- 
propriate to compute estimates of the effects of the selected 
factor levels. 

4.5 Miied Effects Model 

A model in which the levels (versions) of some 
factors are fued, but for other factors they are 
selected at random. 

NOTE - Components of variance are meaningful only for 
the random level factors and their interactions with ‘fuced- 
effect’ factors. 

  
  

 



4.6 Regression Analysis 

The process of estimating the parameters of a 
model by optimizing the value of an objective func- 
tion (for example, by the method of least squares), 
and then testing the resulting predictions for statis- 
tical significance against an appropriate null 
hypothesis model. 

NOTE - Regression analysis plays a role similar to the 
analysis of variance and is particularly pertinent when the 
levels-of the factors are continuous and emphasis is more on 
the model than on the~hypothesis tests. It is also useful for 
designated experiments with missing data since the balance 
required for ordinary use of the analysis~of variance is not 
required for regression analysis. However, lack of balance 
increases the order-dependency (common elements are 
included in the first correlated term and not included in 
subsequent terms) of the hypothesis tests as well as losing 
other advantages of balanced experiments. For balanced 
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experiments, the two techniques are simply variations of the 
method of least squares and produce comparable resulta. 

Example : 

A designed experiment which is orthogonally 
balanced, for example, three quantitative factors 
studied in a 23 factorial, in which only a single 
replicate is run and the assumed model is selected 
iiS 

Y = bg, + blxl + b2x2 + bJx3 + e 
where 

x0 is equal to 1 
x1 is the coded level of factor A, 

x2 is the coded level of factor B, 
x3 is the coded level of factor C, and 

e is the random unexplained error. 

Regression Analysis Table for Example 

(notation: x = X - X) 

Source Regression Degrees of Sum of Squares Mean 
Coefficient Freedom (S.S.) Square 

(Da F) (M.S.) 

Regression of Y on XI (A) 
ZXijY, 

B1 = z xL i 1 SX,=B,ZX,iY;: % 
1 

Regression of Y on X2 (B) 
XX,% 

B2 = - 
wi 

1 Sx2=B2Zxziy;: sx2 

Regression of Yon X3 (C) 
CX,iyi 

B3 = zx 1 Sx3=B,2x3~ sx, 
3i 

Residual - 4 . Sa:By S w4 

Subtraction 

Total 

NOTE - If the 2’ experiment were replicated within the same block the degrees offreedom for the ‘total’ would become 15 
and the ‘residual’ would become 12. The ‘residual’ sum of squares might then be partitioned into 2 elements associated with 
‘replicates’ and ‘lack of fit’ with 8 and 4 degrees of freedom respectively. 

Regression Analysis Table for Example 
Addenda for Replicated Experiment 

Source 

Replicates 

Residual ’ 

Lack of fit 

Degrees of 
Freedom 

(D.F.) 

8 

12 

4 

Sum of Squares 
(S.S.) 

sR=~(~j-~.)2 

SE 

SL = SE - SR 

Mean 
Square 
(M.S.) 

SRI8 

SE/I2 

SU4 

15 
‘I 
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The statistical significance of each source is tested 
using the F-statistic for the mean square of that 
source and the appropriate error term. For the 
single replicate situation, the ‘regression’ terms 
would be tested against the ‘residual’ term. For the 
two replicates situation, the ‘lack of fit’ term would 
be tested against the ‘replicates’ (‘experimental 
error’) term to determine whether the model is 
inadequate, and the ‘regression’ terms would also 
be tested against ‘replicates’. The ‘replicates’ term 
represents a measure of experimental error free of 
the potential contribution of model inadequacy 
which would-be included in the ‘residual’ term. 

4.7 Analysis of Covariance 

A technique for estimating and testing the effects 
of treatments when one or more concomitant 
variables influence the response variable but 
they themselves are not influenced by the treat- 
ments. 

NOTE - Usually the concomitant variable cannot be 
accounted for in the design of the experiment and its 
undesirable effect on the results has then to be taken into 
account in the analysii. For example, the experimental units 
may differ in the amount of some chemical constituent 
present in each unit, which can be measured, but not ad- 
justed. 

Example: 

The model for a singk factor analysis of variance 
ordinarily would be Y, i = pi. Because -of the con- 
comitant variable X, an analysis of variance may 
produce biased results if not adjusted for. To ac- 
count for the contribution of the_concomitant vari- 
able, the model might become Yi j = pi + B (Xc i j) 
- Xc. .). A regression analysis could be used to 
obtain B by pooling the within-version value for 
EXzij and ZXcij Xj with 

,=i(Xcij-X..)Yij 
c (xi j _ x. _)” . The Y values could then 

be adjusted to account for the X, values. 

ANNEX A 

(Foreword) 

DESIGN OF EXPERIMENTS 

Design of experiments is essentially a strategy for 
experimentation that accounts for environmental 
conditions surrounding the -experiments and for 
arranging the experiments so as to provide the 
answer to the questions of interest in an efficient, 
blear manner. Variability exists, and it must be 
taken into consideration. Studies of some factors 
under conditions of isolation where all other fac- 
tors are held “constant” or at some “ideal” level, 
usually are not representative of what happens to 
that factor in the “real” world where there is 
simultaneous variation of many things. ’ 

Experimentation may take place in a laboratory 
where there is a high degree of freedom to change 
the levels of the factors of interest because the test 
specimens are not to be used after the experiment 
is over. In other cases, experimentation takes place 
in an existing process where there is a restriction to 
relatively small changes per step because the unit 
being studied (a person or a product) must be able 
to behave in a normal fashion following the experi- 
ment. The experiments may be run on “laboratory 
model” equipment requiring further work to relate 
to “production” status or they may be run in routine 
type environments. 

While “design of experiments” (see 2.1) is inde- 
pendent in a sense from the analysis and interpreta- 
tion of the data collected, frequently used analysis 

methods should be considered because they help in 
the understanding of design differences. The com- 
bination of design and methods of analysis (see 4) 
reflects how the design is effective. 

In planning an experiment, it is necessary to limit 
biases introduced by the environment. For 
example, if those parts of the experiment using low 
dosage of a drug were conducted in the morning and 
those with high dosage in the afternoon, would the 
environmental factor of time of day be confounded 
with the levels of dosage? Topics such as 
“randomization” (see 2.11) and “blocking” deal. 
with issues of how to minimize the unwanted effects 
of these “noise” elements that are usually so 
numerous they could not be eliminated even if it 
were economical or realistic to do so. Arrange- 
ments into “blocks” (see 3.2), “incomplete blocks” 
(see 3.5), “Latin squares” (see 3.3) and “split-plots” 
(see 3.9) provide mechanisms that let the ex- 
perimenter consider beforehand how to reduce the 
effects of unwanted variability and how to get more 
meaningful answers. 

The area of “factorial experimentation” (see 3.12) 
deals with the inter-relationships between multiple 
factors of interest to the experimenter. One- 
factor-at-a-time studies may be useful in some in- 
stances to gain insight into that factor, but they can 
also be misleading if that factor behaves differently 
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in the presence, absence or at other levels of other 
factors. Frequently the “breakthrough” that per- 
mits a step forward comes from the synergism 
revealed in a study of “interactions” (see 2.13), or a 
failure maystem from unknown interaction effects. 

Factorial experiments may be at two versions or 
levels of each factor, which limits interpretation to 
linear relationships but may be sufficient for 
screening to determine if there is any apparent 
interest in the factor. They may also include three 
or more levels or versions to allow for estimation 
of “curvilinear” effects. The size of the experiment 
is an obvious consideration in experiment efficien- 
cy, and “fractional replication” (see 3.19), a means 
of selecting specific portion of a complete factorial 
experiment, is of immense value. For finding out 
which, if any, ofthe factors shows greatest promise 
of a real change, “screening” experiments using 
small fractional replications can be very effective. 
For work near the optimum points, curvature 
effects may be studied by the creation of 
“composite” designs (see 3.2l)adding supplemen- 
tary points to the two-level factorial experiment. 
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Experimentation is generally carried out to find 
factors of potential interest or to optimize some 
effects. For optimization, the data from the experi- 
ment is frequently used to create a “model” 
(see 2.21) of how the factors relate to selected 
levels. A “response surface” (see 2.22) serves as a 
map these models and may be useful in predic- 
tion and location of the next phase of experiments. 

Good experiment design should: 

a) 

b) 

C) 

d) 

e) 

furnish required 
minimum effort, 

information with 

lead to pre-experiment determination of 
whether the questions of interest can be 
clearly answered in the experiment, 
reflect whether an experiment series or a 
one-shot experiment is desirable, 
show the pattern and arrangement of 
experiment points to avoid misunderstand- 
ings in carrying out the experiment and, 
encourage the use of prior knowledge and 
experience in describing assumptions and 
selection of factors and levels. 

ANNEX B 

(Foreword) 

LIST OF INDIAN STANDARDS ON STATISTICAL METHODS 

IS No. 

397 
(Part 1) : 1972 

397 
(Part 2) : 1985 

397 
(Part 3) : 1980 

397 
(Part 4) : 1987 

1548 
(Part 1) : 1981 

2500 
(Part 1) : 1992 

/Is0 2859-l : 
1989 

2500 
(Part 2) : 1965 

Title 

Method for statistical quality 
control during production : Part 
1 Control charts for variables 
Method for statistical quality 
control during production: Part 
2 Control charts for attributes 
and count of defects 
Method for statistical quality 
control during production : Part 
3 Special control charts 
Method for statistical quality 
control during production : Part 
4 Master control systems 
Manual on basic principles of lot 
sampling : Part 1 Itemized lot 
sampling 

Sampling inspection proce- 
dures: Part 1 Attribute sampling 
plans indexed by acceptable 
quality level (AQL) for lot- 
by-lot inspection 

Sampling inspectionprocedures 
: Part 2 Inspection by variables 
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IS No. 
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5420 
(Part 1) : 1969 

. 

5420 
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6200 
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(Under Print) 
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Guide on precision of test 
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Guide on precision of test 
methods : Part 2 Inter- 
laboratory testing 

Statistical tests of significance : 
Part 1 t, Normal & F-tests 

Statistical tests of significance : 
Part 2 x2 Test 

Statistical tests of significance : 
Part 3 Tests for normality 

Statistical tests of significance : 
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Presentation of statistical data : 
Part 1 Tabulation and sum- 
marization 
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ANNEX D 

( Foreword > 
INDEX 

A 

Aliases 218 
Analvsis 

of bovariance 4.7 
-of variance (ANOVA) 4.2 
Regression. 4.6 ’ 

Average effect 212 

B 

Balanced incomplete block design (BIBD) 3.6 
Block 2.7 

Factors 2.8 

C 

Completely randomized 
design 3.1 
factorial design 3.14 

Composite design 3.21 
Contrast(s) 2.15 

Orthogonal 2.16 
Confounded factorial design 3.16 
Confounding 2.14 

D 

Design 
Balanced incomplete block 3.6 
Completely randomized 3.1 
Completely randomized factorial 3.14 
Composite 3.21 
Confounded factorial 3.16 
Fractional factorial 3.19 
Graeco-Latin square 3.4 
Incomplete block 3.5 
Latin Square 3.3 
of experiment 2.1 
Orthogonal 3.20 
Partially balanced incomplete block 3.7 
Randomized block 3.2 
Randomized block factorial 3.15 
Split block 3.10 
Split plot 3.9 
Two-way split plot 3.10 
Youden square 3.8 

Duplication 2.10 

E 

Experiment 
design 2.1 
Factorial 3.12 
Fully nested 3.23 
Hierarchical 3.22 
Mixture 3.11 
Nested 3.22 
Partially nested 3.25 
Staggered nested 3.24 

Exnerimental 
error 2.6 
unit 2.5 

Effect 
Average 2.12 
Main 2.12 

Evolutionary Operation (EVOP) 2.23 

F 

Factor 2.2 
Factorial experiment 3.12 

2” 3.13 
with partial confounding 3.17 
with total confounding 3.18 

Fiied effects model 4.35 
Fractional factorial design 3.19 

Fully nested experiment 3.23 

c 

Graeco-Latin square design 3.4 

H 

Hierarchical experiment 3.22 

I 

Incomplete block design 3.5 
Interaction 2.13 

L 

Latin square design 3.3 
Level 2.3 

M 

Main effect 2.12 
Method of least squares 4.1 
Mired effects model 4.5 
Mixture experiment 3.11 
Model 2.21 

Fixed effects 4.3 
Random effects 4.4 
Mixed effects 4.5 

N 

Nested experiment 3.22 
Fully 3.23 
Staggered 3.24 
Partial 3.25 

0 

Orthogonal 
array 2.17 
contrasts 2.16 
design 3.20 

P 

Partially balanced incomplete block design 3.7 
Partially nested experiment 3.25 
Predictor variable 2.19 

R 

Random effects model 4.4 
Randomization 2.11 
Randomized block 

design 3.2 
factorial design 3.15 

Regression analysis 4.6 
Replication 2.9 
Response 

variable 2.20 
surface 2.22 

S 

Snlit block design 3.10 
Split plot desigi 3.9 

Two-wav 3.10 
Staggered’neated experiment 3.24 

T 

Treatment 2.4 
%o-way split plot design 3.10 

V 

Variable 
Predictor 2.19 
Response 2.20 

Version (of a factor) 

Y 

Youden Square 3.8 
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